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Key Takeaways

1. Not “use X or timemory” à “use X via timemory”    
(“…and arbitrarily add support for Y”)

2. Front-end library: optional, arbitrary to implement

3. Back-end library: highly modular and easily extendable

4. Tools are provided but is, first and foremost, a toolkit
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Objective: Common Instrumentation API
• Abstractions to record performance 

data for a section of code or work-
flow are a staple in HPC apps

• Issue:
• Increase in multiple language apps
• Increase in multiple architectures apps

• Result:
• Comprehensive analysis requires using 

multiple tools and/or multiple APIs
• Supporting new language/architectures 

in abstractions tends to require 
significant re-write

Boehme, D, Huck, K A, Madsen, J, and Weidendorfer, J. Thu . "The Case 
for a Common Instrumentation Interface for HPC Codes". United States. 
https://www.osti.gov/servlets/purl/1574633.

https://www.osti.gov/servlets/purl/1574633
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Common Instrumentation Goals
• All common HPC languages

• Instrumentation and sampling

• Data-sharing between tools

• Local customization

• Optimal efficiency and optimal 
flexibility implementations

• Agnostic to input application

• Agnostic to output by tools

• Minimal overhead

• Extensible by application

o Wrap existing abstractions

• Easy to support
o Stable interface

o In-house modifications do not 
require upstream propagation
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Common Instrumentation Requirement

• Common convention for calling tools
1. Function pointers? Callbacks?

• Restricts invocation to specific function signature(s)
• Collecting phase data can be unwieldy

2. Dynamic Polymorphism?
• Restricts invocation to specific function signatures(s)
• Simplifies phase data collection à member data
• Always requires heap allocation
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Common Instrumentation Problem

• Need methodology which abstracts types out of pattern(s) 
for calling tools while preserving types
o Start/Stop + different input types:

• Host timer requires no input
• Stream-specific CUDA event timer requires cudaStream_t input 

o Get + different return types:
• Trip-counter à returns integer
• Hardware counter à returns array of doubles
• Roofline à returns elapsed time paired with hardware counters
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Common Instrumentation Solution

• Each tool wraps its behavior/requirements into struct(s) 
o Static configuration data, local intermediate (phase) data, etc.

• Calling convention is member function names
o Functions are overloaded for supported input types
o Functions return any type

• Variadic template classes  
o Bind tools together into tool-like struct
o Variadic member functions accept any input + deduce return type
o Manage metadata, other behavior (e.g. data-sharing)
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Overview

component C++ structs which encapsulate a measurement instance

operation<T> C++ structs which encapsulate how to perform the measurement in 
different scenarios (different arguments, cached data available, etc.)

bundle<T…> C++ struct which binds together components and maps components 
onto operations + broadcasts arguments to operations

trait<T, …> C++ structs which encode properties at compile-time

storage<T> C++ struct which manages accumulation of 
persistent data and call-stack hierarchy

settings C++ struct which maps configuration to code accessors, 
environment variables, command-line arguments, etc.
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Components

• Components provide “tools”
o Member functions + overloads + type-traits à define capabilities
o Reusable within other components (ideally)
o Could implement other components
o Could provide aforementioned:

• Callback system
• Dynamic polymorphism

o May be defined by external tool

Components
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Operations

• Operations provide “tool adapter”
o Handle member function invocation for given set of arguments

• Using SFINAE and/or tag dispatch
o Local customization via template specialization
o Usually require component instance
o May provide function call operator
o Handle runtime disabling

Operations
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Bundles

• Bundles are the “instrumentation library”
o Zero or more components are template parameters
o Filter out components marked as “unavailable”

• Important for creating a portable handle to tools

• Bundles come in various flavors
o Implicit start/stop via RAII
o Implicit/explicit interaction with storage
o Different component allocation schemes 

• Heap, stack, mixed Bundles
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Putting It All Together

Component
Interface

bundle<T…> bundle<Foo, Bar, Yaz> obj;
obj.start(10);

operation<T>
operation::start<Foo>(Foo& f, int v);
operation::start<Bar>(Bar& b, int v);
operation::start<Yaz>(Yaz& y, int v);

f.start();
b.start(10);

SFINAE

struct Foo 
{

void start();
};

struct Bar 
{

void start();
void start(int);

};

Variadic template unrolling

struct Yaz
{

void sample();
};
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Summary

• Flexible interface for creating handling multiple tools 

without abstraction

• Ideal for built-in performance analysis into your code
o Automatically support multiple tools

o Fully customize interface

o Developers and users can create custom components
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Additional Information

• Back-up slides contain more information on:
o Data storage model, type-traits, settings
o Instrumentation in (more) detail
o Wrapping common instrumentation around external functions
o Python bindings
o Summary of existing pre-built tools
o Various other utilities
o Future Work
o Relevant Links
o Contact Information



Backup Slides
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Common Performance Analysis Paradigms

• Start / stop collecting metric around region
• Sample metrics at regular intervals
• Record event data within application
• Dynamic instrumentation
• Compiler instrumentation
• Accumulate or separate data per-process, per-thread
• Call-graph hierarchy
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Performance Analysis APIs

1. Tools provide APIs
o VTune → ittnotify
o NVIDIA → NVTX
o Caliper, CrayPAT, gperftools, LIKWID, Score-P, TAU, etc.

2. Libraries provide tool APIs
o MPI à PMPI, MPI-T, OpenMP à OMPT, Kokkos à KokkosP

3. Libraries provide built-in implementations of tool APIs
o AMReX has amrex::TinyProfiler (basic timing), CrayPAT, ARM-Forge, 

NVTX, VTune, etc.

Common instrumentation simplifies #3 by generalizing #1 and providing 
implementations for #2
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Proposal

• Use C++ templates to provide skeleton framework
o Performance analysis tools use common set of patterns

• Use C++ template metaprogramming to:
o Unify dissimilar interfaces 
o Accommodate different data storage requirements
o Minimize abstractions and/or opaque data types (i.e. void*)
o Eliminate any runtime logic available at compile-time

• Use C++ variadic templates to:
o Support creating a single type which controls multiple tools
o Provide functions which can receive any inputs



Timemory
● Storage
● Traits and Settings
● Example
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Storage
• Singleton per component which 

handles tracking the persistent data
o Unique to each thread and/or 

process
o No synchronization locks or 

communication overhead outside of 
construction and destruction

o Secondary instances get merged into 
primary during finalization

• Supports intermixed layouts: tree, flat, 
timeline, tree-timeline, flat-timeline

• Writes to various output formats
o JSON, XML, text, binary, flamegraph
o More can be supported

Call-graph per component. Each node is keyed to a label (e.g.,
function name, file, and line number) and contains an instance of
the component. The component instance within the call-graph
provides data-storage only.
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Traits and Settings

• Traits customize behavior, optimize performance, 
add/remove features 
o {start,stop}_priority, uses_{timing,memory}_units, statistics, 

derivation_types, cache, python_args, uses_storage, etc. 
• Settings handle mapping runtime configuration variables 

to environment variables, command-line arguments
o tim::settings::enabled()  [C++]
o timemory.settings.enabled [Python]
o TIMEMORY_ENABLED [environment variable]
o --timemory-enabled=off [command-line argument]
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Example

● Four components: Foo, Bar, Yaz, Egg
● Foo always implements flat storage
● Bar has start/stop priority
● Yaz is unavailable
● Egg does not use storage



24

● Yaz is implicitly removed from bundle_t
● Foo, Bar, and Egg created on stack
● Only Foo and Bar insert into storage 
● Foo is started w/o args
● Bar is started with stream arg
● Egg does not provide compatible start
● Bar has priority → stops first
● Foo, Egg stop according to template order
● Foo, Bar add themselves to storage node
● obj.get() translates to tuple of types w/ non-

void get() member function

Usage Implementation

via operation::start<T>

via operation::stop<T>



What else does timemory provide?
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Instrumenting External Functions

• Simple function wrapping and replacement via GOTCHA
o Wrap N functions in ~N+3 lines of code

• Templates will automatically extract return-type and arguments
• Macro for unmangled (extern “C”) functions
• Macros for mangled (extern “C++”) free-, member-functions

o Supports auditing arguments and return value
o Reference counting → scoped function wrapping/replacement
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Tools

• Numerous pre-built command-line tools are provided
o timem → combines UNIX time + rusage + HW counter
o timemory-run → dynamic instrumentation via Dyninst
o timemory-avail → provides component info, available settings, available 

HW counters
• Numerous pre-built instrumentation libraries are provided

o timemory-mpip → wraps MPI calls with runtime selection of components 
and tracks comm data sizes

o timemory-ncclp → wraps NCCL calls with runtime selection of components 
and tracks comm data sizes

o timemory-ompt → implement OMPT with runtime selection of components
o kokkosp_timemory* → generic and dedicated implementations of the 

KokkosP interface
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Python

• Extensive Python bindings are provided
o Settings
o Decorators, context-managers
o Python profiling (per-function), tracing (per-line)
o Control over instrumentation libraries
o Python classes for bundles
o Generic plotting, roofline plotting

• Every enumerated component gets standalone Python class, e.g.
o timemory.component.PapiVector
o timemory.component.CuptiActivity
o timemory.component.CaliperMarker

• Common workflows for CI
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Utilities
• CMake INTERFACE libraries for various flags, libs
• Empirical roofline toolkit (ERT)
• Argument parser similar to Python argparse
• Embedding Python interpreter 
• Subprocess piping utilities
• Conditional instrumentation
• String concatenation
• Signal handling and sampling
• Generic source location class
• Platform-agnostic environment get/set templates
• STL container overloads for arithmetic and statistics



Summary
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Summary (1/3)

• Toolkit for building performance analysis tools
o Use timemory-provided tools and libraries to perform analysis 

with timemory-provided components
o Use timemory API to implement custom high-level performance 

monitoring system
o Use timemory API to supplement timemory-provided tools with 

custom components 
o Build custom tool or library with timemory as backend
o Build custom Python tool with timemory standalone components

• Components
o Optimal invocation of one measurement / usage
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Summary (2/3)

• Operations provide:
o Ability to specialize behavior for a given set of arguments
o Use SFINAE to handle support for operation and/or arguments

• Bundles broadcast arguments to operations and provide 
common interface to components with different 
features/capabilities

• Storage is optional feature and simplifies aggregation over 
multiple processes and multiple threads

• Type-traits encode properties and features at compile-time
• Settings provide mapping between environment variables, 

code accessors, and command-line arguments
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Summary (3/3)

• Powerful, easy-to-use GOTCHA extensions
• Numerous command-line tools and instrumentation 

libraries are provided
• Python interface provides:

o Timemory runtime 
o Toolkit of components for building Python tools
o Visualization utilities

• Miscellaneous utilities for common performance analysis 
tool requirements



● Future Work
● Relevant Links
● Contact Info
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Future Work

• Planned
o Compiler Instrumentation
o Score-P, CUPTI Profiler API, OpenCL, ROCprofiler, ROCtracer
o Additional serialization formats (e.g. YAML, CUBE, etc.)
o Jupyter notebooks
o NERSC Iris + SLURM Integration
o Components which perform analysis of other components 

• Produce recommendations/hints w.r.t. bottlenecks
• Potential

o LLVM X-ray Support
o Generic LLVM pragma implementation
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Relevant Links
• Journal Article

o Madsen, J.R. et al. (2020) Timemory: Modular Performance Analysis for HPC. In: Sadayappan P., Chamberlain B., 
Juckeland G., Ltaief H. (eds) High Performance Computing. ISC High Performance 2020. Lecture Notes in Computer 
Science, vol 12151. Springer, Cham

• Source code
o github.com/NERSC/timemory

• Documentation
o timemory.readthedocs.io

• Tutorials
o github.com/NERSC/timemory-tutorials

• Package Managers
o Available via Spack, PyPi
o github.com/NERSC/timemory/wiki/Installation-Examples

https://www.researchgate.net/publication/342185726_Timemory_Modular_Performance_Analysis_for_HPC
https://github.com/NERSC/timemory
https://timemory.readthedocs.io/en/develop
https://github.com/NERSC/timemory-tutorials
https://github.com/NERSC/timemory/wiki/Installation-Examples
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Contact Info

• If you are interested in:
o Integrating timemory into your performance analysis workflow
o Contributing a component for your tool
o Hands-on tutorial
o Feature request

please send an email to jrmadsen@lbl.gov or create an 
issue on GitHub

mailto:jrmadsen@lbl.gov
https://github.com/NERSC/timemory/issues

